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INTRODUCTION

Models of the magnectic field within the magnetosphere have been i
developed for the purpose of numerical analyses such as particle tra- 3.
jectory tracing and the ordering of satellite data, Roederer (1969) '
revicwed some of the early models. Within the last few years, Olson ,
and Pfitzer (1974), Choe and Beard (1974) and Mead and Fairfield (1975)
have developed sophisticated multiple-term models which include mag-

netospheric currents and the tilt of the earth's dipole axis with respect

to the incident solar wind direction. For many purposes, however, sim-
ple models are desireable because of their mathematical tractability.

Some simplified models have been formulated from truncated versions

of the series expansions describing the sophisticated models (e. g. Williams
and Mcad, 1965, Olson and Pfitzer, 1974).

In this report an alternative simple model is described. The basic

model is constructed from a dipole field and a uniform field directed sun- 5

ward in the northern hemisphecre and antisunward in the southern hemi- }

|

spherec. Some properties of the model are discussed and compared with ;

several other quantitative models. The incorporation of tilt or rotation- |
like fecatures by the addition of terms is demonstrated to illustrate the

flexibility of the model. |

THE BASIC MODEL
The magnetic ficld of the present untilted magnetospheric model

is described by the equation

e




sinOcos¢§? (1)

B = uv (cos 9/!'2) + B

T

B..> 0 0<6<m/2

B, < 0 n/2<0<
in which 0 is colatitude, ¢ is magnetic longitude measured from mid-
night, r is the geocentric distance and % is the unit vector directed
perpendicular to the dipole axis. The first term in (1) describes the
dipole field, and the second term describes a current-sheet field which
points in opposite directions in the northern and southern hemispheres.
The current sheet extends throughout the magnetosphere, effectively
replacing the magnetopause and ring currents in the inner magneto-
sphere. Two constants, p and BT' describe the dipole field and the
current sheet field, respectively. At large distances from the dipole,
the field in the magnetotail is approximately equal to BT §

The components of the magnetic field given by eq. (1) are:

loe}
n

-2u cos 8/r> + B sin 0 cos ¢ (2)

o)
n

- sin O/r3 + BT cos 0 cos ¢

-BT sin ¢

where BT changes sign at the equatorial plane as specified above,
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PROPERTIES OF THE BASIC MODEL

The divergence of the field given by eq. (1) vanishes, as it
must. It was found that the value BT = .00015 produces a mag-
netosphere which resembles other quzntitative models when the dipole
field strength p = , 31 is invoked and when r is measured in earth
radii. Several projected views of the 3-dimensional model obtained
with these parameters are shown in Fig. 1.

Figure 2 shows the field lines in the noon-midnight plane only.
The dimpled magnetopause of this model is located at r ~ 10. The co-
latitude 0c and radial distance r. of the noon cusp, where the field
lines separate to form the tail, can be found by setting B (eq. (2))

equal to zero. The cusp occurs at the constant colatitude

o, = tan"! W2 = 54.7° (3)
For the parameters p = .31 and BT = .00015 selected above, tke
I3 = 0 point is located ot the radial disiance
o 1/3 = 14.3
R [ tan OCIBT] (4)

The magnitude of B along field lines originating at various
dipole latitudes is shown in Fig. 3 together with similar data given
by Mead (1964) for his 13-term model. Although the minimum B

points in the prescnt model lie eaquatorward of the minima in the Mead
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Fig.

1.

The basic magnetospheric model described by
eq. (1). Projected views from above the equa-
torial plane (top), in the noon-midnight plane
(center), and from the sun (bottom) are shown.
Field lines are drawn for colatitudes within 50°
of the poles at intervals of 5° and for longitude
intervals of 18°
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Fig. 2. Field lines described by eq. (1) in the noon-midnight
plane, drawn for colatitudes within 50° of the poles
at intervals of 5°
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Fig. 3. Comparison of field strengths along field
lines originating at various latitudes in
the present model (eq. (1)) and the 13-
term Mead model
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model, the behavior of B along a field line is similar. A qualitative
comparison with several highly sophisticated models based on space-
craft magnetometer data is illustrated in Fig. 4, which shows selected
field lines in the noon-midnight plane. Aside from the dimple in the
field lines near the dayside magnetopause, the present simple model
appears to agree with the sophisticated models about as well as the
sophisticated models agree with each other (e.g. see Walker, 1976).
However, the diurnal variation at constant r that occurs in these other
models and in the observed field does not occur in the model described
by eq. (1).

Selected field lines of simplified models that are employed in
particle trajectory calculations for cosmic ray access studies (Gall
and Orozco, 1974) are illustrated in Fig. 5. One obvious difference
between these models and the present model is the configuration of the
magnetotail. In the present model the magnetotail is composed of quasi-
parallel field lines that gradually converge toward the equatorial plane
where they reverse direction. Many of the other simple models are
actually intcaded for use only at r £ 13 carth radii because they have
tail field lines that diverge or show other unrealistic behavior (e. g.
see Olson and Pfitzer, 1974). Since the present model more accurately
represents the observed magnetotail (e. g. see Willis and Pratt

1972), it is superior for simulating effects related to the tail configuration.

11




Fig. 4.

Comparison of field lines originating at various
magnetic latitudes A in the Olson and Pfitzer
(1974) (OP 74), Mead and Fairfield (1975)

(MF 75), and present magnetospheric field
models in the noon-midnight plane
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A primary shortcoming of the present model is the discontinuity
of B in the equatorial plane. However, this discontinuity is easily
smoothed in numerical analyses by introducing a factor tanh (r cos 0/
0), where § is a constant, in the tail field term:

B = u¥ (cos 0/r2)+B sin @ cos ¢ tanh (r cos 0/8) R (5)

T
{M. Schulz, personal communication). The effect of this modification,
as shown by Fig. 6, is essentially that of the addition of a current sheet
of "thickness' § in the equatorial plane. The value of § determines the
colatitude of the last '"closed'" field lines and the shape of the magneto-

pause near the equator.

TILTED DIPOLE

The dipole in the present model can be tilted with respect to the

tail by rotating the coordinate system for the current-sheet field:

Br = -24 cos O/r3 1 BT (sin 0 cos ¢pcos a-cos 0 sin a)
B0 = -p sin O/r3 + B'I‘ (cos 0 cos g cos a + sin 0 sin a)
B¢ = -Bg sin ¢ cos a

(6)

Bp > 0 cos 0 > - sin 0 cos ¢ tan a

B,.< 0 cos 0 < - sin 0 cus ¢ tana
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Fig. 6. The magnetosphere model described by eq. (5). Field
lines in the noon-midnight plane are shown for two
values of 6§
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where a is the angle between the dipole axis and the tail field direction

X. Selected field lines for the tilted model with a = 30° are shown in
Fig. 7. As in other models with a tilted dipole (e.g., Mead and Fair-
field, 1975), some field lines appear to penetrate the magnetopause.
These lines could be eliminated if the appropriate magnetopause cur-

rents were included.
ADDITION OF ROTATION

A rotation-like effect can be incorporated in the basic model (2)
by adding a term to B¢ which describes a cylindrical vortex oriented

along the dipole axis:

B¢ = -BT sin @ -K/r sin. 0 (7)

Here K characterizes the vortex strength, or rotational velocity.
Although this is not a particularly realistic representation of the conse-
quences of the rotation of the magnetosphere, it is qualitatively con-
sistent with the behavior that may be found at latitudes above the region
of corotation.

Figure 8 illustrates that the effect of the above addition to B¢‘ is
an asymmetric distortion of the field lines and the magnetopause. In
fact, a local-time asymmetry in the magnetopause shape, similar to the
distortion produced by the rotation term in eq. (8), has been observed

(Fairfield and Mead, 1975, McDiarmid, et. al., 1976).

R e
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Fig. 7. The titled magnetosphere model described by eq. (b)
with o 30 as it appears for the same field lines as
shown in Fig, 1
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Fig. 8. Illustration of the effect of adding the
""rotation' term -K/r sin 0 to B,
Equatorial plane projections of the
field lines used in Fig. 1 are shown
for two values of K
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CONCLUDING REMARKS

It is noteworthy in the present context that Mead and Fairfield E
(1975), in their report describing a 17-term model obtained by fitting
spacecraft magnetometer data, found that the predominant non-dipole
term in the series expansion of B described a field directed sunward
in the northern hemisphere and antisunward in the southern hemisphere.

The advantages of using the simple model that has been described

here are obvious. The step-wise calculation of particle trajectories in
a model of the magnetospheric magnetic field with a realistic magneto-
tail can be carried out using minimal computer time. Moreover, the

effects on the magnetosphere of the spatial nonuniformity and temporal

variability of the solar wind are simply modeled by adjusting BT' For

example, asymmetric distortions can be described by BT = BT (%, V. 2).

The possibilities afforded by the parameterization of BT’ together with
the tilt and rotation options, make this an unusually flexible magneto- ,

spheric model for both qualitative and quantitative analyses. 4
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LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting
experimental and theoretical investigations necessary for the evaluation and
application of scientific advances to new military concepta and systems. Ver-
satility and flexibility have been developed to a high degree by the laboratory
personnel in dealing with the many problems encountered in the nation's rapidly
developing space and missile systems. Expertise in the latest scientific devel-
opments is vital to the accomplishment of tasks related to these problems. The
laboratories that contribute to this research are:

Aerophysics Laboratory: Launch and reentry aerodynamics, heat trans-
fer, reentry physics, chemical kinetics, structural mechanics, flight dynamics,

atmospheric pollution, and high-power gas lasers.

Chemistry and Physics Laboratory: Atmospheric reactions and atmos-
pheric optics, chemical reactions in polluted atmospheres, chemical reactions
of excited species in rocket plumes, chemical thermodynamics, plasma and
laser-induced reactions, laser chemistry, propulsion chemistry, space vacuum
and radiation effects on materials, lubrication and surface phenomena, photo-
sensitive materials and sensors, high precision laser ranging, and the appli-
cation of physics and chemistry to problems of law enforcement and biomedicine.

Electronics Research Laboratory: Electromagnetic theory, devices, and
propagation phenomena, including plasma electromagnetics; quantum electronics,
lasers, and electro-optics; communication sciences, applied electronics, semi-
conducting, superconducting, and crystal device physics, optical and acoustical
imaging; atmospheric pollution; millimeter wave and far-infrared technology.

Materials Sciences Laboratory: Development of new materials; metal
matrix composites and new forms of carbon; test and evaluation of graphite
and ceramics in reentry; spacecraft materials and electronic components in
nuclear weapons environment; application of fracture mechanics to stress cor-
rosion and fatigue-induced fractures in structural metals,

Space Sciences Laboratory: Atmospheric and ionospheric physics, radia-

tion from the atmosphere, density and composition of the atmosphere, aurorae
and airglow; magnetospheric physics, cosmic rays, generation and propagation
of plasma waves in the magnetosphere; solar physics, studies of solar magnetic
fields; space astronomy, x-ray astronomy; the effects of nuclear explosions,
magnetic storms, and solar activity on the earth's atmosphere, ionosphere, and
magnetosphere; the effects of optical, electromagnetic, and particulate radia-
tions in space on space systems.
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